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Overview

• Overview of Markov Chain Monte Carlo (MCMC)
technique

for drawing random samples from probability density functions

• Bayesian approach to model-based analysis

• Example - tomographic reconstruction from two views
Deformable geometric models

• Probabilistic interpretation of priors (MCMC)

• Estimation of uncertainty in reconstructed shape
Use of MCMC to sample posterior

Hard truth approach - probe model stiffness
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MCMC - problem statement

• Parameter space of n dimensions represented by vector x
• Given an “arbitrary” target probability density function

(pdf), q(x), draw a set of samples {xk} from it

• Only requirement typically is that, given x, one be able to
evaluate Cq(x), where C is an unknown constant

MCMC algorithms do not typically require knowledge of the
normalization constant of the target pdf; from now on the
multiplicative constant C will not be made explicit

• Although focus here is on continuous variables, MCMC
applies to discrete variables as well

• Called a Markov chain since xk+1 depends only on xk
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Uses of MCMC

• Permits evaluation of the expectation values
for K samples,   〈 f(x)〉 = ∫ f(x) q(x) dx  ≅ (1/K) Σk  f(xk)

typical use is to calculate mean 〈x〉 and variance 〈(x - 〈x〉)2〉
• Useful for evaluating integrals, such as the partition

function for properly normalizing the pdf

• Dynamic display of sequence as video loop
provides visualization of uncertainties in model and range of
model variations

• Automatic marginalization
when considering any subset of parameters of an MCMC
sequence, the remaining parameters are marginalized over
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Markov Chain Monte Carlo

x2

Probability(x1, x2)
accepted step
rejected step

x1

• Metropolis algorithm:
draw trial step from
symmetric pdf, i.e.,
 t(∆ x) =  t(-∆ x)

accept or reject trial step

simple and generally
applicable

relies only on calculation
of  target pdf for any x

Generates sequence of random samples from an
arbitrary probability density function
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Metropolis algorithm

• Select initial parameter vector x0

• Iterate as follows:  at iteration number k
  (1) create new trial position x* = xk + ∆x ,
         where ∆x is randomly chosen from t(∆x)
  (2) calculate ratio  r = q(x*)/q(xk)
  (3) accept trial position, i.e. set  xk+1 = x*
          if r ≥ 1 or with probability r, if r < 1
          otherwise stay put,  xk+1 = xk

• Requires only computation of q(x)
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Choice of trial distribution

• Loose requirements on trial distribution t(.)
stationary; independent of position

• Often used functions include
n-D Gaussian, isotropic and uncorrelated

n-D Cauchy, isotropic and uncorrelated

• Choose width to “optimize” MCMC efficiency
rule of thumb: aim for acceptance fraction of about 25%
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Experiments with the Metropolis algorithm

• Target distribution q(x) is n dimensional Gaussian
uncorrelated, univariate (isotropic with unit variance)

most generic case

• Trial distribution t(∆x) is n dimensional Gaussian
uncorrelated, equivariate; various widths

target

trial

xk
xkxk
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MCMC sequences for 2D Gaussian

results of running Metropolis
with ratios of width of trial to
target of 0.25, 1, and 4

when trial pdf is much smaller
than target pdf, movement across
target pdf is slow

when trial width same as target,
samples seem to sample target
pdf better

when trial width much larger
than target, trials stay put for
long periods, but jumps are large

• this example from Hanson and
Cunningham (SPIE, 1998)

0.25

1

4
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MCMC sequences for 2D Gaussian

results of running Metropolis with
ratios of width of trial to target of 0.25,
1, and 4

display accumulated 2D distribution
for 1000 trials

viewed this way, it is difficult to see
difference between top two images

when trial pdf much larger than target,
fewer splats, but further apart

0.25

1

4
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MCMC - autocorrelation and efficiency

In MCMC sequence, subsequent parameter values are usually
correlated

Degree of correlation quantified by autocorrelation function:

  where y(x) is the sequence and l is lag

For Markov chain, expect exponential

Sampling efficiency is

In other words,       iterates required to achieve one statistically
independent sample
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Autocorrelation for 2D Gaussian

plot confirms that the
autocorrelation drops
slowly when the trial
width is much smaller
than the target width;
MCMC efficiency is poor

best efficiency is when
trial width about same as
target width (for 2D)

Normalized autocovariance for
various widths of trial pdf

relative to target:  0.25, 1, and 4

1
4

0.25

ρ
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Efficiency as function of width of trial pdf

for univariate Gaussians,
with 1 to 64 dimensions

efficiency as function of
width of trial
distributions

boxes are predictions of
optimal efficiency from
diffusion theory
[A. Gelman, et al., 1996]

efficiency drops
reciprocally with number
of dimensions
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Efficiency as function of acceptance fraction

for univariate Gaussians, with
1 to 64 dimensions

efficiency as function of
acceptance fraction

best efficiency is achieved
when about 25% of trials are
accepted for a moderate
number of dimensions

Acceptance fraction

64

1
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Efficiency of Metropolis algorithm

• Results of experimental study agree with predictions
from diffusion theory (A. Gelman et al., 1996)

• Optimum choice for width of Gaussian trial distribution
occurs for acceptance fraction of about 25% (but is a
weak function of number of dimensions)

• Optimal statistical efficiency:  η ~ 0.3/n
holds for simplest case of uncorrelated, equivariate Gaussian

correlation and variable variance generally decreases efficiency
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Further considerations

• When target distribution q(x) not
isotropic

difficult to accommodate with
isotropic t(∆x)

each parameter can have different
efficiency

desirable to vary width of different
t(x) to approximately match q(x)

recovers efficiency of univariate
case

• When q(x) has correlations
t(x) should match shape of q(x)

q(x)

t(∆x)
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MCMC Issues

• Confirmation of convergence to target pdf
is sequence in thermodynamic equilibrium with target pdf?

validity of estimated properties of parameters (covariance)

• Burn in
at beginning of sequence, may need to run MCMC for
awhile to achieve convergence to target pdf

• Use of multiple sequences
different starting values can help confirm convergence

natural choice when using computers with multiple CPUs

• Accuracy of estimated properties of parameters
related to efficiency, described above

• Optimization of efficiency of MCMC
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Annealing

• Introduction of fictitious temperature
define functional ϕ(x) as minus-logarithm of target probability
          ϕ(x) = - log(q(x))

scale ϕ by an inverse “temperature” to form new pdf
           q†(x, T) = exp[- T-1 ϕ(x)]

q†(x, T) is flatter than q(x) for T > 1  (called annealing)

• Uses of annealing (also called tempering)
allows MCMC to move between multiple peaks in q(x)

simulated annealing optimization algorithm (takes lim T → 0)
for purpose of finding global minimum

estimate normalization constant (partition function) by
including T as parameter in MCMC:
            Z = ∫ q(x) dx = ∫

0

1
 q†(x, T) dx dT
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Annealing to handle multiple peaks
Example - target distribution is three narrow, well-separated peaks

For original distribution (T = 1), an MCMC run of 10000 steps
rarely moves between peaks

At temperature T = 100 (right), MCMC moves easily between
peaks and through surrounding regions

from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)

T = 1 T = 100
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Other MCMC algorithms

• Gibbs
vary only one component of x at a time

draw new value of xj from conditional q(xj| x1 x2... xj-1 xj+1... )

• Metropolis-Hastings
allows use of nonsymmetric trial functions, t(∆x; xk), suitably
chosen to improve efficiency

use r = [t(∆x; xk) q(x* )] / [t(-∆x; x*) q(xk )]

• Langevin technique
uses gradient* of minus-log-prob to shift trial function towards
regions of higher probability

uses Metropolis-Hastings

* adjoint differentiation provides efficient gradient calculation
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called hybrid because it alternates Gibbs & Metropolis steps

associate with each parameter xi  a momentum pi

define a Hamiltonian
         H = ϕ(x) + Σ pi

2/(2 mi)  ;  where ϕ = -log (q (x ))
new pdf:
         q’(x, p) = exp(- H(x, p)) = q(x) exp(-Σ pi

2/(2 mi))

can easily move long distances in (x, p) space at constant H using
Hamiltonian dynamics, so Metropolis step is very efficient
• requires gradient* of ϕ (minus-log-prob)

Gibbs step: draw p from Gaussian (at fixed x)

efficiency may be better than Metropolis for large dimensions

* adjoint differentiation provides efficient gradient calculation

Hamiltonian hybrid algorithm
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Hamiltonian hybrid algorithm

xi

pi

k

k+1

k+2

Typical trajectories:
    red path - Gibbs sample from momentum distribution
    green path - trajectory with constant H, followed by Metropolis
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Conclusions about MCMC

• MCMC provides good tool for exploring the posterior
and hence for drawing inferences about models and
parameters

• For valid results, care must be taken to
verify convergence of the sequence

exclude early part of sequence, before convergence reached

be wary of multiple peaks that need to be sampled

• For good efficiency, care must be taken to
adjust the size and shape of the trial distribution; rule of
thumb is to aim for 25% trial acceptance for  5 < n < 100

• A lot of research is happening - don’t worry, be patient
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Bayesian approach to model-based analysis

• Models
used to describe and analyze physical world

parameters inferred from data

• Bayesian analysis
uncertainties in parameters described by probability
density functions (pdf)

prior knowledge about situation may be incorporated

quantitatively and logically consistent methodology for
making inferences about models

open-ended approach
• can incorporate new data

• can extend models and choose between alternatives
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Bayesian viewpoint

• Focus on probability distribution functions (pdf)
uncertainties in estimates more important than the estimates
themselves

• Bayes law:  p(a|d) ~ p(a) p(d|a)
where a is parameter vector and d represents data

pdf before experiment, p(a)  (called prior)

modified by pdf describing experiments, p(d|a)  (likelihood)

yields pdf summarizing what is known, p(a|d)  (posterior)

• Experiment should provide decisive information
posterior much narrower than prior
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Who wins the election?

• Process: people vote for candidate A or candidate B
VA = number of votes A receives

VB = number of votes B receives

• Winner is one with simple majority
if VA > VB , A wins, etc.

• Before election, pollsters
sample voters; try to predict
who will win

• Plot shows B ahead of A: but
considering uncertainties,
“it is too close to call”

Number votes

Pr
ob

ab
ili

ty

VBVA
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Who wins the election?

• During voting process, one can combine known results
with predictions for unknown results to obtain new
prediction for outcome

should arrive at more narrow probability distributions

• After voting process, one knows VA and VB with certainty:
winner declared!
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Bayesian model building

• Steps in model building
choose how to model (represent) object

assign priors to parameters based on what is known
beforehand

for given measurements, determine model with highest
posterior probability (MAP)

assess uncertainties in model parameters

• Higher levels of inference
assess suitability of model to explain data

if necessary, try alternative models and decide among them
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Example - tomographic reconstruction
• Problem - reconstruct object from two projections

2 orthogonal, parallel projections (128 samples in each view)

Gaussian noise;
rms-dev 5% of proj. max

Original object

Two orthogonal projections
with 5% rms noise
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Prior information used in reconstruction

• Assumptions about object
object density is uniform

abrupt change in density at edge

boundary is relatively smooth

• Object model
object boundary - deformable geometric model

• relatively smooth

interior has uniform density (known)

exterior density is zero

only variables are those describing boundary
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Likelihood

• Probability of data d, given model and parameters a
• For measurements degraded by independent Gaussian-

distributed noise, minus-log-likelihood is

where di is the ith measurement,
di

*
  its predicted value (for specific a),

σ is rms noise in measurements

− = = −∑log =[ ( )] ( ) ( )p d di id a a| ϕ χ
σ

1

2
2 1

2 2

2*
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Deformable geometric models

• Natural to describe objects in terms of their
boundaries

• In data analysis aim is to balance
internal energy ε: measure of deformation

external energy, e.g. χ2: measure of mismatch to data

• Constrain smoothness based on curvature κ
deformation energy, e.g.,  ε ∼   κ2 ds, for curve

controls number of degrees of freedom of curve

• Analogy to elastic materials - rods, sheets

∫
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Probabilistic interpretation of prior
for deformable model

• Probability of shape:

• Sample prior pdf using MCMC
shows variety of shapes deemed admissible before
experiment, capturing our uncertainty about shape

decide on α = 5 on basis of appearance of shapes

Plausible shapes drawn from prior for α = 5

( ) 



− ∫ ds

S 2

2 2
exp~ κα

π
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Tomographic reconstruction from two views

• Data consist of two orthogonal views
parallel projections, each containing 128 samples

Gaussian noise; rms-dev 5% of proj. max

• Object model
boundary is 50-sided polygon

smoothness achieved by prior on curvature κ
uniform (known) density inside boundary

•  ϕ = - log posterior =                          ,
where S is total perimeter,

     is sum of squares of residuals divided by noise
variance

( )
ds

S
∫+ 2

2 2

2

2
1 καχ

π

2χ
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The Bayes Inference Engine

• Flexible modeling tool developed at LANL
object described as composite geometric and density model

measurement process (principally radiography)

• User interface via graphically-programmed data-flow
diagram

• Full interactivity with every aspect of model

• Provides
MAP estimate by optimization (gradient by adj. diff.)

samples of posterior by MCMC

uncertainty estimates
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The Bayes Inference Engine

• BIE data-flow diagram to find MAP solution

Optimizer uses gradients that are efficiently calculated by
adjoint differentiation in code technique(ADICT)

Boundary
description

Input projections

χ 2

2
1

 likelihoodlog =−

( )
ds

S
∫=− 2

2 2
prior  log κα

π
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MAP reconstruction

• Determine boundary that
maximizes posterior
probability

• Not perfect, but very good
for only two projections

• Question: How do we
quantify uncertainty in
reconstruction?

Reconstructed boundary
(gray-scale) compared with

original object (red line)
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The Bayes Inference Engine

• BIE data-flow diagram to produce MCMC sequence

Boundary
specification

Image

Boundary
specification

Input projections

χ 2

2

1
 likelihoodlog =−

( )
ds

S
∫=− 2

2 2
prior  log κα

π
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Uncertainties in two-view reconstruction

• From MCMC samples from posterior with 150,000
steps, display three selected boundaries

these represent alternative plausible solutions

compared to MAP estimated objectcompared to original object
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Visualization of uncertainty

• Problem inherently difficult for numerous parameters
wish to see correlations among uncertainties in parameters

• View MCMC sequence as video loop
advantage is one directly observes model in normal way

• View several plausible realizations from MCMC
sequence

• Marginalized uncertainties (one parameter at a time)
rms uncertainty (or variance) for each parameter

credible intervals
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Posterior mean of gray-scale image

• Average gray-scale images over MCMC samples from
posterior

• Value of pixel is probability it lies inside object boundary

• Amount of blur in edge is related to magnitude of
uncertainty in edge localization

• Observe that posterior median nearly same as MAP
boundary

implies posterior probability distribution symmetric about MAP
parameter set
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Posterior mean of gray-scale image

• Pixels in posterior mean image with value 0.5
represent posterior median boundary position

similar to MAP boundary
for two-view problem

Posterior mean image
compared to

MAP boundary (red line)



November 16, 2000 Univ. Bretagne Occidentale 44

Uncertainty in edge localization

• Steepness of edge profile of posterior mean image
indicates uncertainty in edge localization

uncertainty is nonstationary; varies with position

Top, left of center, less well determinedAt top of reconstruction (tangent point)
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Credible interval

• Bayesian "confidence interval"
probability that actual parameter lies within interval

different from standard definition of confidence interval,
which is based on (hypothetical) repeated experiments

• For MCMC posterior mean image, determines credible
interval for boundary position

95% credible interval is region of posterior mean image in
which pixel values lie between 0.025 and 0.975.
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Credible interval

• 95% credible interval of boundary localization for
two-view reconstruction compared with original
object boundary (red line)

narrower at tangent points

92% of original boundary
lies inside
95% credible interval

• Marginalized measure
of uncertainty -
ignores correlations
among different positions
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Important issues

• Bayesian vs. frequentist approach to uncertainty
assessment

MCMC sampling of posterior
• single data set, single object

Monte Carlo simulation of repeated experiments to determine
characteristics of the estimator used

• variety of data sets (variety of objects)

• Advantages of Bayesian approach
applies to the specific data set supplied

exposes null space; multiple solutions that yield exactly same
measurements
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Stiffness of posterior

• Gaussian approximation for posterior:
- log p(a|d) = ϕ = ϕ0 + (a − a0)T K (a − a0)

where a is parameter vector
K is the curvature or second derivative matrix of ϕ (aka
Hessian) and
a0  is the position of the minimum in ϕ (MAP estimate)

• Curvature matrix K is measure of stiffness of solution

• Covariance matrix is inverse of K:  C = K-1
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Determining stiffness of posterior

• First estimate a0 by minimizing ϕ (MAP solution)

• Apply force to model (a vector in parameter space)

• Effect of force is to add potential to ϕ:
ϕ = fT (a − a0) + ϕ0 + (a − a0)T K (a − a0)

• Minimizing ϕ again; setting gradient of ϕ to zero
 K (a − a0) = f
or a − a0 = K-1 f = C f

• Parameter displacement from MAP solution is
proportional to covariance matrix times applied force

• We have called this the “hard truth” method, because
truth is hard!
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Hard truth method

• Interpret � = - log probability
as potential function; sum of

deformation energy

• Stiffness of model
proportional to curvature of �

• Row of covariance matrix is
displacement obtained by
applying a force to MAP
model and reminimizing �

χ 2

2
1

Applying force (white bar) to
MAP boundary (red) moves it to
new location (yellow-dashed)
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Summary

• MCMC technique - to sample arbitrary pdf

• Bayesian approach to model building
uncertainty assessment

MCMC sampling of posterior
• covariance estimates

• credible intervals

permits use of prior information

• Deformable geometric models
useful to capture notions of object shape

smoothness prior states preference for smooth boundary

• Example - tomographic reconstruction from two views
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